

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

Low-Background Challenges and Solutions in 0vββ Experiments with Discrete Detectors

Alan Poon

Institute for Nuclear & Particle Astrophysics Nuclear Science Division

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

Low-Background Challenges and Solutions in 0vββ Experiments with Discreet Detectors

Alan Poon

Institute for Nuclear & Particle Astrophysics Nuclear Science Division

Outline

- Introduction
 - $0v\beta\beta$, Majorana v...and all that

- 0vββ decay experiments with discrete detectors
 - Design considerations
 - Backgrounds
- Challenges and solutions
 - Ex.: Cosmogenic activation
 - Ex.: Electronics fabrication
 - Ex.: Rn background
- Summary

Is neutrino its own antiparticle?

"Vanilla" light-Majorana mass mechanism

$$(T_{1/2}^{0
u})^{-1} = G_{0
u}(Q_{etaeta},Z) \left| M_{0
u}
ight|^2 \left< m_{etaeta}
ight>^2$$
 form factor factor $matrix matrix mass$

Sensitivity

$$T_{1/2}(0\nu) \propto \sqrt{\frac{b\Delta E}{MT}}$$

Need:

- low background $(b \downarrow)$
- high detector energy resolution ($\Delta E 1$)
- large mass of $\beta\beta$ decaying isotope ($M\uparrow$)
- patience count for a long time (T^{\uparrow})

Experimental background target

Signal expected in real-time experiments

Type of experiment	Signal	Detection (Background) rate
SNO Solar neutrino experiment (1998-2006)	Cherenkov light from e-	~15 events t ⁻¹ d ⁻¹
LUX WIMP search	Scintillation light and ionization from nuclear recoils	(~15 events t ⁻¹ d ⁻¹)
Future ⁷⁶ Ge neutrinoless double beta decay search	e- in Ge diode detectors	(~0.1 event t ⁻¹ y⁻¹)

The SNO heavy water D₂O was purified to have ~10⁻¹⁵ (g ²³²Th)/(g D₂O). The KamLAND liquid scintillator was purified to even higher purity.

Next-Generation 0νββ Experiments

$T_{1/2}$ (0v)	Signal rate [cts/(ton-Ge y)		
10 ²⁵ y	500		
5 x 10 ²⁶	10		
5 x 10 ²⁷	1		
> 10 ²⁹	< 0.05		

• low background $b \sim 0.1 \ count/(ton-Ge \ yr) \ in \ ROI$

Keeping it clean

KamLAND-ZEN
clean balloon construction
(K. Inoue - DBD16)

Example of improvements

keep staying away
goggle
welding machine
cover sheet.
glove on glove
laundry twice a day
clean underwear

changing room in a clean room .

dust visualization

more neutralizer

. .

cover

Energy resolution ΔE and $2\nu\beta\beta$ background

Isotope	T _{1/2} (2v) [10 ²¹ y]			
⁴⁸ Ca	$(4.4^{+0.5}_{-0.4} \pm 0.4) \times 10^{-2}_{(NEMO-3)}$			
⁷⁶ Ge	1.84 ^{+0.14} _{-0.10} (GERDA)			
⁸² Se	$(9.6 \pm 0.3 \pm 1.0) \times 10^{-2}$ (NEMO-3)			
⁹⁶ Zr	$(2.35 \pm 0.14 \pm 0.16) \times 10^{-2}$ (NEMO-3)			
¹⁰⁰ Mo	$(0.57^{+0.13}_{-0.09} \pm 0.08) \times 10^{-2}_{(NEMO-3)}$			
¹¹⁶ Cd	$(2.8 \pm 0.1 \pm 0.3) \times 10^{-2}_{(NEMO-3)}$			
¹³⁰ Te	0.70 ± 0.09 ± 0.11 _(NEMO-3)			
¹³⁶ Xe	$2.165 \pm 0.016 \pm 0.059$ _(EXO-200) $2.38 \pm 0.02 \pm 0.14$ _(KamLAND-Z)			
¹⁵⁰ Nd	$(9.11^{+0.25}_{-0.22} \pm 0.63) \times 10^{-3}_{(NEMO-3)}$			

K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014)

Background Comparison

Background Comparison

Source = detector discrete detectors

Best energy resolution

Past experiments
Running experiments
In construction / anticipation

COURICINO

Detector Technology

Detector Technology

Discrete detectors

Pros:

- high detection efficiency (source = detector)
- (usually) high energy resolution
- scaling of 0vββ rate as systematic check (install detectors with different levels of isotope enrichment)
- use neighboring detectors as veto ("granularity cut")

Cons:

- extreme care in handling necessary
- impossible / difficult to purify during operation
- per-unit-mass detector cost could be high: isotopic enrichment + detector fabrication + material loss during fabrication

- Choose radiopure materials
- Keep hot stuff away from active detector volume

Homogeneous, self shielding, fiducial volume cut

Ex: KamLAND-ZEN

- Choose radiopure materials
- Keep hot stuff away from active detector volume

Ex: Majorana Demonstrator (76Ge): Ge detectors in vacuum

Majorana Demonstrator background budget:

Based on achieved assays of materials When UL, use UL as the contribution

MJD goal: 3 cts / 4 keV / t-y (scale to 1 cts / 4 keV / t-y in large-scaleGe)

Majorana Demonstrator background budget:

Based on achieved assays of materials When UL, use UL as the contribution

MJD goal: 3 cts / 4 keV / t-y (scale to 1 cts / 4 keV / t-y in large-scaleGe)

Majorana Demonstrator background budget:

Based on achieved assays of materials When UL, use UL as the contribution

MJD goal: 3 cts / 4 keV / t-y (scale to 1 cts / 4 keV / t-y in large-scaleGe)

Majorana Demonstrator background budget:

Based on achieved assays of materials When UL, use UL as the contribution

MJD goal: 3 cts / 4 keV / t-y (scale to 1 cts / 4 keV / t-y in large-scaleGe)

Majorana Demonstrator background budget:

Based on achieved assays of materials When UL, use UL as the contribution

MJD goal: 3 cts / 4 keV / t-y (scale to 1 cts / 4 keV / t-y in large-scaleGe)

Majorana Demonstrator background budget:

Based on achieved assays of materials When UL, use UL as the contribution

MJD goal: 3 cts / 4 keV / t-y (scale to 1 cts / 4 keV / t-y in large-scaleGe)

Example:

Cosmogenic activation

MJD Electroformed Cu

- MAJORANA operated 10 baths at the Temporary Clean Room (TCR) facility at the 4850' level
 and 6 baths at a shallow UG site at PNNL. All copper was machined at the Davis campus.
- The electroforming of copper for the DEMONSTRATOR SUCCESSFULLY completed in May 2015.
 - 2474 kg of electroformed copper on the mandrels
 - 2104 kg after initial machining,
 - 1196 kg that will be installed in the DEMONSTRATOR.

Electroforming Baths in TCR

Inspection of EF copper on mandrels

EF copper after turning on lathe

- Th decay chain (ave) ≤ 0.1 μBq/kg
- U decay chain (ave) ≤ 0.1 μBq/kg

Material transport (GERDA)

Cosmogenic backgrounds

MAJORANA DEMONSTRATOR

- Avoid re-growing crystal, re-work detectors (no shielding)
- Minimize transport (long exposure with some / no shielding)

Cosmogenic backgrounds at low energy

Low background in low-energy regime - extended low-energy physics program to search for physics beyond the Standard Model.

Pseudo-scale coupling results - MJD

FIG. 2. (Color online) The 90% UL on the pseudoscalar axion-like particle dark mater coupling from the Majorana Na Demonstrator (red) compared to EDELWEISS [30] (orange), XMASS [38] (green), and XENON [34] (blue). Recent results by LUX have not yet been published [39], and new results from CDEX [40] are available on the arXiv [40].

Example:

Clean materials near/in the active volume

Radiopurity of typical electronics components

500 MΩ SMD resistor used by GERDA

Size	Th-234 [uBq/pc]	Ra-226 [uBq/pc]	Th-228 [uBq/pc]	K-40 [uBq/pc]	Pb-210 [uBq/pc]
0603 0.48 mm ³ /pc 1.33 mg	4 ± 2	1.9 ± 0.3	0.6 ± 0.2	10 ± 4	46 ±5
0402 0.153 mm ³ /pc 0.6 mg/pc	2 ± 1	0.7 ± 0.1	0.2 ± 0.1	< 2.6 Cattac	32 ± 3 dori, LRT 2015

 $1 \mu Bq \approx 0.1 / day$

Low-Background Electronics Development

Current state-of-the-art: MJD low-mass front-end

P. Barton et al., Low-noise low-mass front end electronics for low-background physics experiments using germanium detectors. IEEE Nucl. Sci. Symp. Conf. Rec. **2011**, 1976 (2011).

Background: < 1 count/t/y in 4-keV ROI

Component	Material	Purity (g / g)		Counts / ROI / t / y		Ref.
		²³² Th	²³⁸ U	²³² Th	^{238}U	
Substrate	Fused silica	101×10 ⁻¹²	284×10 ⁻¹²	0.0259	0.0616	MJ ICP-MS
Resistor	a-Ge	5×10 ⁻⁹	5×10 ⁻⁹	0.0001	0.0001	MJ ICP-MS
Traces	Au	47(1)×10 ⁻⁹	$2.0(0.3)\times10^{-9}$	0.0421	0.0015	MJ ICP-MS
Traces	Ti	< 400×10 ⁻¹²	< 100×10 ⁻¹²	~ 0	\sim 0	MJ ICP-MS
FET	FET die	< 2×10 ⁻⁹	$<$ 141 \times 10 ⁻¹²	< 0.0107	< 0.0006	MJ ICP-MS
Bonding wire	Al	91(2)×10 ⁻⁹	9.0(0.4)×10 ⁻¹²	0.0004	~ 0	MJ ICP-MS
Epoxy	Silver epoxy	< 70×10 ⁻⁹	< 10×10 ⁻⁹	< 0.0685	< 0.0082	MJ gamma
Total				<0.1476	<0.0720	

Full board assays: ~2-3x higher in background

Example of a future concept: Lowmass low-background flexible circuitry

Thermal sensor on a flexible parylene substrate

Technologies for future experiments:

- More signal readout circuitry (amplification) as close to the detector as possible [ASICs]
- Flexibility of the form factor in these circuits [flexible substrate]
- Ultra-low background material development
- Ability to run at very low temperature (hence lower thermal noise)

Low-Background Electronics Development

The First: Mechanically Cooled, Wirebonded PPC HPGe, with CMOS Front End

Atmospheric Pressure He Gas

Provides ultra-low vibration thermal link using standard GM cycle (10 – 80 K)

→ Eliminates all vibrations

Ultra-Low Capacitance

Smaller point contact (0.26 pF)

enabled by wire bonding

→ Ultra-Low Electronic Noise

Preamp-on-a-Chip
CMOS ASIC for SDD
4 electrons-rms noise
→ Better than JFET
at low temperatures

Low temperature and low capacitance of CMOS and Ge.

Result: lowest noise HPGe detector: 39 eV-FWHM at 40 K.

cf. MJD front-end: 85 eV-FWHM at 80K MJD full module: ~150-180 eV FWHM

Coaxial Cables - MJD

- For discrete detector systems, very likely that special production runs are required. MJD contracted Axon' in France to make the "picocoax" cable
- Additional testing, cleaning in ultrasonic bath and drying between production steps (conductor prep, inner dielectric extrusion, shielding, jacket extrusion).

Goal: << 1 c/ROI/t/y

HV Cable	Technique	Th (c/ROI/t/y)	U (c/ROI/t/y)
Projection	Simulation & assay	<0.02	<0.06
Axon' - Run 1 (QA issue at factory - no cleaning steps)	ICPMS	1.1	16.5
Axon' - Run 2	ICPMS & Gamma	<0.004	<0.081

Site visits for quality assurance is essential

Coaxial Cables - MJD

- The cables were stored in dry N_2 environment until they were being used.
- Room ²²²Rn can stick to the outer jacket if not stored properly

Proper clean storage of components is essential

Example:

Background rejection

Active Veto

- Reject:
 - backgrounds intrinsic to the detectors and
 - external backgrounds cosmic rays and the veto itself

Ex: GERDA (76Ge): Ge detectors immersed in LAr

⁴²Ar ($t_{1/2}$ =33y) $\xrightarrow{\beta}$ ⁴²K($t_{1/2}$ =12.3h, Q=3.5MeV)

GERDA-II implementation of LAr veto

GERDA background rejection

GERDA background rejection

A/E: Detector pulse-shape discrimination parameter

Summary

- The DM and ββ R&D topics have a lot in common, even though the energy regimes of their signal region of interest are different.
- Similar background sources:
 - cosmic-ray
 - material impurities
 - Rn and other environmental radiation
 - contamination from handling, processing, and storage
- ββ community has achieved a background index of O(1 ct/t/y/ROI). Efforts to get to 0.1 ct/t/y/ROI underway.
- Opportunities to share resources and collaborate (example: <u>radiopurity.org</u>).

radiopurity.org

A project adopted by the international low-background community

Data from European ILIAS database incorporated

Experiments are adding their radioassay results to this database

J.C. Loach et al., A Database for Storing the Results of Material Radio-purity Measurements Nucl. Instr. Meth. A839 (2016) 6-11

35

3-sigma discovery vs background

37 Detwiler 2015

90% CL sensitivity vs background

38 Detwiler 2015

CUORE (130Te bolometers) and beyond

CUORE ¹³⁰Te and beyond

Cherenkov or scintillation light

CUORE goal: 0.01 counts/keV/kg/yr

The ALARA principle

- Choose radiopure materials
- Keep hot stuff away from active detector volume

Ex: GERDA - Phase I

The ALARA principle

GERDA Phase-I background results:

Eur. Phys. J. C (2014) 74:2764 Page 5 of 25 2764

Table 2 Gamma ray screening and 222 Rn emanation measurement results for hardware components and BIs derived from MC simulations. The activity of the mini shroud was derived from ICP-MS measurement assuming secular equilibrium of the 238 U decay chain. Estimates of the BI at $Q_{\beta\beta}$ are based on efficiencies obtained by MC simulations [13,14] of the GERDA setup

	Component	Units	⁴⁰ K	²¹⁴ Bi and ²²⁶ Ra	²²⁸ Th	⁶⁰ Co	²²² Rn	BI [10 ⁻³ cts/(keV kg yr)]
	Close sources: up to 2	cm from detecto	rs					
Φ *	Copper det. support	μBq/det.	<7	<1.3	<1.5			< 0.2
S	PTFE det. support	μBq/det.	6.0 (11)	0.25 (9)	0.31 (14)			0.1
<u>O</u>	PTFE in array	μBq/det	6.5 (16)	0.9(2)				0.1
\overline{O}	Mini shroud	μBq/det.		22 (7)				2.8
	Li salt	mBq/kg		17 (5)				≈0.003 ^a
	Medium distance sourc	es: 2–30 cm fro	m detectors					
	CC2 preamps	μBq/det.	600 (100)	95 (9)	50 (8)			0.8
	Cables and suspension	mBq/m	1.40 (25)	0.4(2)	0.9(2)	76 (16)		0.2
	Distant sources: further	r than 30 cm fro	m detectors					
	Cryostat	mBq					54.7 (35)	< 0.7
_	Copper of cryostat	mBq	<784	264 (80)	216 (80)	288 (72)		<0.05
fa	Steel of cryostat	kBq	<72	<30	<30	475] <0.05
—	Lock system	mBq					2.4(3)	< 0.03
·	²²⁸ Th calib. source	kBq			20			<1.0

a Value derived for 1 mg of Li salt absorbed into the surface of each detector

Hard to shield components close to the detectors (e.g. front-end electronics and cables)

Coaxial Cables - GERDA

GERDA Phase-1

Table 3 Cables deployed in the 1-string and 3-string locks.

²²⁸Th: 1.1±0.5 mBq/kg ²³⁸U < 59 mBq/kg Cu/PTFE 1 mm OD linear density = 2.7 g/m

cable	ref.	type	1-string	3-string
Habia SM50	[66]	50 Ω , coaxial	15	24
SAMI RG178	[67]	HV (4 kV), coaxial	4	-
Teledyne Reynolds 167-2896	[68]	HV (18 kV), coaxial	-	10
Teledyne Reynolds 167-2896	[68]	HV (5 kV), unshielded	1	2
total number			20	38

[arXiv:1212.4067v1]

Construction:		
Conductor	Silver plated high strength copper alloy (1x0,16)	0,16
Dielectric	Solid PTFE	0,52
Braid	Silver plated copper (0,06)	0,85
Jacket	FEP, Brown-transparent	1,00
Weight	2,7 kg/km	
Temperature rating (°C)	-55 / +200°C	
Order reference	30000-050-00	

Over an order of magnitude too radioactive for MJD

Coaxial Cables - GERDA

GERDA Phase-1

Table 3 Cables deployed in the 1-string and 3-string locks.

²²⁸Th: 1.1±0.5 mBq/kg ²³⁸U < 59 mBq/kg Cu/PTFE 1 mm OD linear density = 2.7 g/m

cable	ref.	type	1-string	3-string
Habia SM50	[66]	50 Ω , coaxial	15	24
SAMI RG178	[67]	HV (4 kV), coaxial	4	-
Teledyne Reynolds 167-2896	[68]	HV (18 kV), coaxial	-	10
Teledyne Reynolds 167-2896	[68]	HV (5 kV), unshielded	1	2
total number			20	38

[arXiv:1212.4067v1]

Construction:		
Conductor	Silver plated high strength copper alloy (1x0,16)	0,16
Dielectric	Solid PTFE	0,52
Braid	Silver plated copper (0,06)	0,85
Jacket	FEP, Brown-transparent	1,00
Weight	2,7 kg/km	
Temperature rating (°C)	-55 / +200°C	
Order reference	30000-050-00	

Over an order of magnitude too radioactive for MJD

- Silver-plated Cu is likely hot
- Scaling to a HV cable (5 kV DC rating) means even higher activity

Other commercial options?

Coaxial, Ribbon and Multi-Conductor Cables

TEMP-FLEX COAXIAL CABLES

a THOUGH company							or quantities	greater the	en listed, ca	I for quote.			
MOUSER	Temp-Flex	Fig.	Nominal	Signal	Braid	Color	Price Per Ft.						
STOCK NO.	Part No.		OD (in.)	Conductors	Shield	Color	1	10	25	50			
Twinax Cable · Capa	citance: 14.5pF/ft. ·	Different	tial Impedance: 100+/-5	Ohms									
538-100TX-08	100TX-08	A	0.049+/-0.005	32AWG	44AWG	1-Blue, 1-Green	2.12	1.99	1.83	1.53			
Flexible Microwave Co													
538-141SC-1901	141SC-1901	В	0.157+/-0.005	19AWG	40AWG	Blue	11.56	10.87	9.96	8.37			
538-047SC-2901	047SC-2901	В	0.056+/-0.003	29AWG	46AWG	Blue	4.49	4.22	3.87	3.25			
Microminiature Coaxia	Cable - Capacitano	e: 30pF/f	t. Nominal · Impedance	e: 50+/-2 Ohms									
538-086SC-2401	086SC-2401	В	0.101+/-0.005	24AWG	40AWG	Blue	7.40	6.96	6.38	5.36			
538-50MCX-37	50MCX-37	C	0.125+/-0.005	42AWG	48AWG	Blue	2.55	2.39	2.20	1.85			
High Speed Data Cabi	es · Capacitance: 3	0pF/ft. N	ominal • Impedance: 5	0+/-2 Ohms									
538-50CX-41	50CX-41	D	0.071	30AWG, 7/38	40AWG	Black	2.81	2.64	2.42	2.04			
538-50CX-42	50CX-42	D D	0.100	26AWG, 7/34	38AWG	Black	3.64	3.42	3.14	2.63			

TEMP-FLEX FLAT FEP RIBBON CABLES

Mouser catalogue

a ITHONEX company

Mouser Part #: 538-50MCX-37

Manufacturer Part #: 50MCX-37

Manufacturer: Temp-Flex

Description: Coaxial Cables 42AWG PFA, 50 OHM MICRO COAX, PER

FT

Learn more about Temp-Flex 50MCX-37

Page 1,389, Mouser Online Catalog

Page 1,389, PDF Catalog Page
Data Sheet

Radiopurity concerns:

- dye in the jacket
- silver-plated copper alloy in braid and central conductor

It became clear that we needed to do a special production run

Coaxial Cables - MJD

- FEP and PFA
 - have high dielectric strength (Dupont: 260 kV/mm)
 - are radiopure

	Sample	Lab	R	eported	l in pg/	g	Reported in μBq/kg				
	Sample	Lau	²³² Th	±1σ	238 U	±1σ	²³² Th	±1σ	$^{538}\Pi$	±1σ	
4	Cu conductor wire (signal, CFW)	LBNL	<30	-	<50	-	<120	,	<620	-	
	Cu conductor wire (high voltage, CFW)	LBNL	<30	-	180	50	<120	•	2200	620	
Cu	Cu wire 50AWG (uncleaned, MWS ¹)	LBNL	120	20	73	28	490	80	910	350	
	Cu wire 50AWG (cleaned, MWS)	LBNL	30	30	42	10	120	120	520	120	
	PFA416 ²	PNNL	2.60	**	0.89	**	10.66	**	11.09	**	
	PFA340A ³	PNNL	3.28	**	1.90	**	13.45	**	23.57	**	
dielectric	FEP 106	PNNL	0.11	**	1.96	**	0.43	**	24.36	**	
diciodino	FEP NP20	PNNL	0.99	**	0.61	**	4.05	**	7.60	**	
	FEPTE 9494	PNNL	4.03	**	0.71	**	16.52	**	8.75	**	

- The radiopurity of the Cu drives the background budget:
 - reduce OD of central conductor
 - reduce OD of inner dielectric
 - helical shield (instead of braid)

Coaxial Cables - MJD

Contracted Axon' in France to make the "picocoax" cable

		Material	Signal	HV		
1	central conductor	Bare Cu	0.0762 mm <i>ф</i>	0.152 mm <i>φ</i>		
2	inner dielectric	FEP / PFA () 254 m				
3	helical shield	Bare Cu	AWG50	AWG50		
4	jacket	FEP / PFA	0.4 mm <i>φ</i>	1.2 mm <i>φ</i>		
L	inear mass o	0.4 g/m	3 g/m			

Making connectors

Technical Issue: Plug Design

- Cable connection: solder to tiny pins
- Pins are held in vespel housing that also provides strain relief
- Press-fit, keyed shell interface for ease of assembly in the glove box
- Vacuum tests indicate no significant virtual leaks.
- BeCu contact is too radioactive for MJD (~10 cts/t/y). Iterative prototyping to establish reliable connection during thermal cycling.
- Full body ICPMS indicates the connectors are sufficiently clean for MJD

Solder

"Typical clean solder":

Grouping	Name	Isotope	Amount	Isotope	Amount	
▶ SuperCDMS	Solder paster, Alpha WS-820	Th-232	5.28 mBq/kg	U-238	5.615 mBq/kg	 ж
▶ ILIAS UKDM	Solder, SnCu	Th-232	1 ppb	U-238	5 ppb	 ×
▶ ILIAS UKDM	Silfos (Ag, Cu, Sn solder)	Th-232	0.05 ppb	U-238	0.05 ppb	 ×
► ILIAS UKDM	Silver solder	Th-232	0.072 ppb	U-238	0.1 ppb	 ж

- Low background ideas:
 - Roman Pb
 - Source clean solder (e.g. SnAg), use abietic acid as flux.

PCB in low-background experiment

S. Nisi*, A. Di Vacri, M.L. Di Vacri, A. Stramenga, M. Laubenstein

Laboratori Nazionali del Gran Sasso, INFN, S. S. 17/bis km 18+910, I-67010 Assergi (AQ), Italy

Applied Radiation and Isotopes 67 (2009) 828-832

Sample	⁴⁰ K (mBq kg ⁻¹)	²³² Th (mBq kg ⁻¹)	²³⁸ U (mBq kg ⁻¹)
PEN V-spectroscopy	510±20	136±3	242±3 (²²⁶ Ra)
γ-spectroscopy	_	_	$236 \pm 68 (^{234m}Pa)$
ICP-MS	370±50	110±10	200±30
KAPTON® HN DuPont	- 4	14.07	44 . 4 (226p -)
γ-spectroscopy	<5.4	1.4 ± 0.7	14±1 (²²⁶ Ra) <27 (^{234m} Pa)
ICP-MS	7 <u>+</u> 3	0.65 ± 0.08	17±2
CuFlon®			
γ-spectroscopy	48 ± 15	<1.9	<0.84 (²²⁶ Ra) <132 (^{234m} Pa)
ICP-MS	6-2/+9	0.28-0.03/+0.04	0.36-0.04/+0.07

• CuFlon is cleaner than Kapton in U and Th, but it's much worse in 40K

Processing PCBs

- Once selected the proper raw material

 Important not to spoil its radiopurity by PCB process.
- Avoid finishing protective layers (soldermasks etc.)
- Minimize Cu deposition
- Gold finishing required for bonding (typically <1 um) introduces significant U contaminations. Minimize golded surfaces (in GERDA few mm²/detector)

							Cleanin		Micro			
				Solfor	Fosfor		g	PreAu	Etchin	Gold		Nickel
39	K	ppb		2000	4900		6100	Saturate	96000	32000000		38000
208	Pb	ppb	٧	0,3	0,7		11	28	17	2	٧	10
232	Th	ppb	٧	0,03	0,05	٧	0,03	1	0,04	1,7	٧	0,3
238	–	ppb		0,13	22		0,8	5,8	0,81	7,7	٧	0,3

Do other mechanisms tell us anything about (light) m(v)?

"Vanilla" mass mechanism

$$\langle m_{\beta\beta} \rangle = \sum_{i=1}^{3} \left| U_{ei}^2 m_i \right|$$

L-R symmetric model

Heavy neutrino exchange

L-R mixing

Ovββ half-life may not yield any direct information about the neutrino mass.

Doubly-charged Higgs triplet exchange

How to disentangle different $(0\nu\beta\beta)$ mechanisms?

Fig. 2 (Color online) Normalised $0\nu\beta\beta$ decay distribution with respect to the electron energy difference in the MM (*red*) and RHC_λ mechanism (*blue*) for the isotopes ⁸²Se (*solid curves*) and ¹⁵⁰Nd (*dashed curves*) [SuperNEMO, Eur. Phys. J. C 70 (2010) 927]

How to disentangle different $(0v\beta\beta)$ mechanisms?

Exploit differences in different isotopes

FIG. 1 (color online). Relative deviations of half-life ratios $\mathcal{R}^{\text{NP}}(^{A}X)$, normalized to the half-life of 76 Ge, compared to the ratio in the mass mechanism $\mathcal{R}^{m_{\nu}}(^{A}X)$. Deppisch et al., Phys. Rev. Lett. 98, 232501 (2)

- Exploit differences in $0\nu\beta^+\beta^+$ / $0\nu\beta^+$ EC
- Exploit differences in first-excited and ground state transitions

Problem: Need statistics

Complementarity to LHC / heavy flavor physics

• LNV via heavy right-handed neutrino exchange can be probed via $l^{\pm}l^{\pm} + 2j$

Same sign: $l^{\pm}l^{\pm} + 2j$

Non-observation gives stringent limits on short-range W_R mechanisms

Complementarity to LHC physics

• LNV via heavy right-handed neutrino exchange can be probed via $l^{\pm}l^{\pm}+2j$

Same sign: $l^{\pm}l^{\pm} + 2j$

Non-observation gives stringent limits on short-range WR mechanisms

What are the possibilities inside the black box?

GUT scale / seesaw

LHC energy

 $0\nu\beta\beta$ allows us to probe the GUT scale

Complementarity to LHC physics

• LNV via heavy right-handed neutrino exchange can be probed via $l^{\pm}l^{\pm}+2j$

Same sign: $l^{\pm}l^{\pm} + 2j$

Non-observation gives stringent limits on short-range WR mechanisms

What are the possibilities inside the black box?

GUT scale / seesaw

LHC energy

 $0\nu\beta\beta$ allows us to probe the GUT scale